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Abstract. A new probabilistic mortality forecasting approach is introduced that unlike the Lee-
Carter Method (and its variants) is directly linked to the fundamental demographic equation, the
cornerstone of demographic theory. This is an important consideration in developing accurate
forecasts. Because it forecasts “years lived,” this new approach directly yields life expectancy
and a corresponding future life table, which is not the case with the Lee-Carter Method and its
variants. In an ex post facto evaluation using Estonian data from the Human Mortality Database,
the new approach was found to provide accurate forecasts of “years lived by age” (nLx) both in
terms of point and interval measures over a 20 year period. Probabilistic nLx forecasts for Estonia
are then provided, the results are discussed, and the next steps in evaluating this approach are
suggested.

Background. Mortality Forecasting is an important activity. It is used in the preparation of
population forecasts based on the cohort component (CCM) method (Smith, Tayman, and
Swanson, 2013: 61-72), the development of social welfare, annuity and pension products (Lee and
Miller, 2001; Booth and Tickle, 2008; Haberman and Renshaw, 2011; Huang, Maller, and Ning,
2020; Rabbi and Mazzuco, 2020; Shang, Booth, and Hyndman, 2011; Tabeau, VVan Den Berg Jeths,
and Heathcote, 2001) and epidemiological/health research (Andrade, Camarda, and Arolas, 2025;

Swanson, Bryan, and Chow, 2020; Booth and Tickle, 2008).

The Lee-Carter approach to forecasting mortality was introduced in 1992 (Lee and Carter,
1992) and along with its refinements and variants is arguably the most widely used approach in
the world (Booth and Tickle, 2008; Rabbi and Mazzuco, 2020; Basellini, Camarda, and Booth,
2023). As observed by Basellini, Camarda, and Booth (2023: 1034), it is useful to examine the
Lee-Carter approach in terms of two aspects, the model and the method. The model is a functional
form for age-specific mortality (age-specific death rates, ASDRs) and the method consists of a
series of steps to estimate the model and fit a time series model to the time index, along with
specific adjustment and estimation procedures. Both the model and the method are essentially
mathematical fitting procedures and have no direct relationship to the dynamics of population
change and the components of those change, one of which is obviously mortality. Moreover, in

order to generate a forecast of life expectancy and a corresponding life table, the Lee-Carter
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Method and its variants require that the ASDRs be turned into a life table (e.g., Fergany’s method

(Fergany, 1971) and the Keyfitz-Frauenthal method (Kintner, 2004: 314-315)).

This paper introduces a new method of mortality forecasting by showing how measures
of uncertainty from a standard time series model, “Auto Regressive Integrated Moving Average”
(“ARIMA,” Box and Jenkins, 1976), can be applied to a population projection based on the
Hamilton-Perry Method (“H-P,” Baker et al., 2017) that generates “years lived” by age (nLx) and
which also includes Total years lived (To) and life expectancy at birth (eo) as found in an abridged
period life table. From the perspective of formal demography, this is a forecast of the age
distribution and size of the stationary population associated with the mortality and the age structure

of a given population (see, e.g., Ryder, 1975; Rao and Carey, 2015; Swanson and Tedrow, 2021).

The measures of forecast uncertainty are relatively easy to calculate and meet several
important criteria used by demographers who routinely generate forecasts, including utility
(Tayman and Swanson, 1996) as well as face validity, plausibility, production cost, timeliness, ease
of application and ease of explanation (McNown, Rogers, and Little, 1995; Smith, Tayman, and
Swanson, 2013: 302-315). Unlike the Lee-Carter method and its corresponding “principal
components” variants (Booth and Tickle, 2008; Lee and Carter, 1992; Lee and Miller, 2001; Shang,
Booth, and Hyndman, 2011) this approach, given three major constraints (described later), links
the probabilistic forecast uncertainty to the fundamental demographic equation, the cornerstone of
demographic theory. In addition to being a potential contribution to formal demography, this is an
important consideration in developing accurate forecasts (Swanson, et al. 2023). Also, unlike the
Lee-Carter method and its variants, this new approach directly yields life expectancy and a
corresponding future life table because it directly forecasts “years lived” by age (nLx). An ex post

facto evaluation of the accuracy of the method is conducted in the form of a case study using



Estonian data found at the Human Mortality Data Base (HMD) and an example set of forecasts

using current data is provided for Estonia.

Data. We selected Estonia for this case study mainly for two reasons. First, its population is small:
As of 1 January 2025, Statistics Estonia (2025) shows it as 1,369,995. We wanted a small
population in this case study because our experience in working with large and small populations
suggested that if the evaluation of our proposed method shows that it works well in a small
population, it is, with some caveats (found in the “Evaluation” and “Discussion” sections), likely
to work not only work in other small populations but also in large populations. Second, its data are
of high quality and found in HMD (2025), which is where we obtained annual nLx data from 1959
to 2024 that were organized in such a manner that made it easy to assemble into 18 age groups (0-
4,5-9, 10-14,...,75-79, 80-84, and 85+). We also computed the ratio nLx/42,388, where 42,288 is
the land area of Estonia (km?) so that we had annual nLx “density” values for each of the 18 age
groups from 1959 to 2024.We discuss why we computed these density values in the “Transferring

Uncertainty” section.

Method. We employ the Hamilton-Perry (H-P) method (Baker et al., 2017), which computes
cohort change ratios (CCRs) using two counts of the age-structure (nLx) in question, typically five
or ten years apart, which directly capture age-specific population dynamics. Before turning to a
discussion of the probabilistic approach we use (which is followed by a description of our input
data and the projection results), it is helpful to note that the H-P method is algebraically equivalent
to the fundamental demographic equation and therefore grounded in demographic theory (Baker
et al., 2017: 251-252),. Barring unforeseeable catastrophes and other events that have very low
probabilities of occurring (Taleb, 2010), as noted earlier, the closer one comes to having accurate

data embedded in a method that is grounded in demographic theory, the more accurate a population
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projection method will likely be (Swanson et al., 2023), a dictum that one could reasonably expect

to apply to forecasting nlLx.

There are three components of change in a population: mortality, fertility, and migration.
The overall growth or decline of a population is determined by the interplay among these three
components. The exact nature of this interplay can be formalized in the fundamental demographic

equation:

Pi-P,=B-D +IM - OM, [1]

Where P, is the population at the end of the time period; Py is the population at the beginning of
the time period; and B, D, IM, and OM are the number of births, deaths, in-migrants, and out-
migrants during the time period, respectively. The difference between the number of births and the
number of deaths is called natural change (B — D); it represents population growth coming from
within the population itself. It may be either positive or negative, depending on whether births
exceed deaths or deaths exceed births. The difference between the number of in-migrants and the
number of out-migrants is called net migration (IM — OM); it represents population growth coming
from the movement of people into and out of the area. It may be either positive or negative,
depending on whether in-migrants exceed out-migrants or out-migrants exceed in-migrants. In
cases where IM and OM do not occur (e.g., the world as a whole, the stationary population that is

found in a life table), these elements can be omitted from the fundamental population equation.

The fundamental demographic equation can also be extended to apply to age groups, age-
gender groups, and age-gender-race groups, as well as age-gender-ethnicity groups. This type of
extension forms the logical basis of the equation and can be used to project a population into the

future by age, age and gender, or by age, gender, and race. Once launched, these components



(which are frequently modified as the projection moves into the future based on assumptions about
their direction) are applied to the resulting age-gender structure at each cycle of the projection. In

terms of nLxthere is no migration, which eliminates the need for this component in forecasting nLx.

The Hamilton-Perry Method of Population Projection. The Hamilton-Perry (H-P) method
(Baker et al., 2017: 251-252) conforms to the fundamental population equation but it does not
apply the separate components of population change to the age structure at the launch year. Instead,
it computes cohort change ratios (CCRs) using two counts of the age-structure in question,
typically five or ten years apart, which directly capture mortality and migration. The fertility
component uses a “child-adult ratio” from the most recent age structure data or a “child-woman
ratio” for a projection by gender. It is well-suited for generating a population projection, as well as
nLx, per the framework found in Swanson et al. (2023): (1) It corresponds to the dynamics by
which a population moves forward in time; (2) there is information available relevant to these
dynamics; (3) the time and resources needed to assemble relevant information and generate a
projection are minimal; and (4) the information needed from the projection is generated by the H-

P method.

The H-P method moves a population by age (and gender) from time t to time t+k (the
projection cycle length) using CCRs computed from data in the two most recent data points (e.g.,
censuses or estimates) with the proviso that the width of the age groups (other than the terminal,
open-ended age group) can be divided into the length of the projection cycle such that it yields a
whole number as the quotient. It consists of two steps. The first uses existing data to develop
CCRs, and the second applies the CCRs to the cohorts of the launch year population to move them

into the future. The formula for the first step, the development of a CCR, is:

nCCRx,i = nPxiit/ nPx-kiit-k, [2]
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where
nPx.it is the population aged x to x+n in area i at the most recent census/estimate (t),
nPxkitk iSthe population aged x-k to x-k+n in area i at the 2" most recent
census/estimate (t-Kk),
k is the number of years between the most recent census/estimate at time t
for area i and the census/estimate preceding it for area i at time t-k.
The basic formula for the second step, moving the cohorts of a population into the future, is:
nPx+kiitrk = (h"CCRx,i ) X (nPxiit ), [3]
where
nPx+k,it+k IS the population aged x+k to x+k+n in area i at time t+k

Given the nature of the CCRs, they cannot be calculated for the youngest age group (i.e.,
ages 0-4 if it is a five-year projection cycle; ages 0-9 if it is a ten-year projection cycle), because
this cohort came into existence after the census/estimate data collected at time t-k. To project the
youngest age group, one uses the “Child-Adult Ratio” (CAR), where the number in the youngest
age group at time t is divided by the number of adults at time t who are of childbearing age (e.g.,
15-44). It does not require any data beyond what is available in the census/estimate sets of

successive data.
The CAR equation for projecting the population aged 0-4 is:
Population 0-4: sP ot+k = (5Po.t / 30P 151) % ( 30P15,t+k) [4]

where



P is the population,

t is the year of the most recent census, and

t+k is the estimation year.

In using the H-P method to forecast nLx and in which the youngest age group is sLo (ages
0-4, as is used in this paper), we obviously do not employ a CAR because the number of births in
a life table is fixed, usually at 100,000 each year, which means that in a five year period (which
corresponds to the width of abridged life table when 5 year age groups are employed up to the
terminal, open-ended age group). Thus, sLo is comprised of the survivors of these births. As such,

one can simply take the ratio: sLoit/sLoitk, Or a variant thereof, as we do in this paper

Projections of the oldest open-ended age group differ slightly from the H-P projections for
the age groups beyond age 10 up to the oldest open-ended age group. If, for example, the final
closed age group is 80-84, with 85+ as the terminal open-ended age group, then calculations for
the CCRix+ require the summation of the three oldest age groups to get the population age 75+ at

time t-k in a ten forecast cycle (80+ in a five year forecast cycle):

«CCR75,it = «Psgsit [ «P75,it-k [5]

The formula for estimating the population of 85+ of area i for the year t+k is:

«Pgsit+k = (xCCR75,it ) X (P75,i1). [6]

An issue that is found in the cohort change ratio for the terminal, open-ended age group
(which in our case is 85 years and over) in a projection where migration is not a component of
population change is that like the equivalent probability of survival in an abridged life table, deaths

are not uniformly distributed within the interval (Chiang, 1984: Lahiri, 2018; Swanson, Bryan, and



Chow, 2020). This issue tends to exaggerate the length of life for those aged 85 and over in an

abridged life table and in an H-P projection.

Before turning to the next section, please note that we used a “Trended CCR” model in this
paper. It was selected because in a preliminary exploration (the details of which we do not report
here) we examined two forms of the CCR model, one in which the initial CCRs were kept constant
and the other in which the initial CCRs were trended to the CCRs five year beyond the launch year
and found the latter not only to be more accurate but also have fewer constraint violations. The

trended model is described in detail in the “Evaluation” section.

Constraints. There are three major constraints in forecasting (or backcasting) nLx. These
constraints affect any approach designed to forecast nLx that is based on the fundamental
population equation. First, the births (and deaths) in a life table are typically fixed at 100,000
annually. Second, nLx cannot exceed this constraint in that it is limited to n*100,000 in a fixed
width age group of n years. Third, nLx+i <nlLx. Because the CCR approach (as well as the CCM
approach) does not recognize these constraints, one must take care to make sure the forecast does

not violate them. We discuss this in more detail in the “Evaluation” section.

Transferring Uncertainty. In regard to transferring uncertainty to a CCR forecast of nLx, the
approach we take here follows that of Swanson and Tayman (2025a, 2025b). It employs the
ARIMA (Auto-Regressive Integrated Moving Average) time series method in conjunction with
work by Espenshade and Tayman (1982), whereby we can transfer the uncertainty information

found in the ARIMA method’s forecast to the population forecast provided by the CCM approach.

Before moving on to a description of the Espenshade-Tayman approach, we first clarify

our use of the term “confidence interval” in regard to forecast uncertainty. It is more common to



use the term “forecast interval” or “prediction interval” in the context of forecasting because a
“confidence interval,” strictly speaking, applies to a sample (Swanson & Tayman, 2014: 204).
However, underlying the approach we describe herein is the concept of a “superpopulation,”
which, as discussed later, describes a population that is but one sample of the infinity of
populations that will result by chance from the same underlying social and economic cause systems
(Deming and Stephan, 1941). The concept of viewing a forecast as a sample leads us to choose the

term “confidence interval” rather than forecast interval or prediction interval.

The uncertainty intervals for the nLx forecasts are based on ARIMA models that forecast
the uncertainty of population density (total population/land area) for the same horizon years. \We
use "density" because the Espenshade-Tayman (1989) method for translating uncertainty
information does so from an estimated "rate,” which in this case is the "rate” of population
density. Other denominators could be used in developing such a "rate,” such as the ratio of
population to housing units. However, using the land area as the denominator provides a virtually
constant denominator over time, thereby reducing the effort in assembling the "rate” data. It also
serves as a stabilizing element regarding the use of ARIMA in that it dampens the effect of short-
term population fluctuations more effectively than, say, housing units, which also can fluctuate
over time and are not always in concert with population fluctuations. As should be obvious, the
data assembled to develop the ARIMA age-specific density forecasts should encompass the base
data used to develop the nLx forecasts themselves. The case study we present meets this condition
in that the historical annual record of each of the nLx values cover the period (1959-2024) in
which both the ARIMA models for generating the age-specific (,Lx) density forecasts and the

CCR Ly forecasts themselves are based. The land area of Estonia is approximately 42,388 km?.
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The approach we take to generate uncertainty measures follows that of Swanson and
Tayman (2025a, 2025b), which employs the ARIMA (Auto-Regressive Integrated Moving
Average) time series method in conjunction with work by Espenshade and Tayman (1982),
whereby we can transfer the uncertainty information found in the ARIMA method’s forecast to the
population forecast provided by the H-P approach. As described by Smith, Tayman, and Swanson
(2001: 172-176), an ARIMA model attempts to uncover the stochastic processes that generate a
historical data series. The mechanism of this stochastic process is described—~based on the patterns
observed in the data series—and that mechanism forms the basis for developing forecasts. At its
heart, the ARIMA time series model is a regression-like forecast method. It was popularized by
Box and Jenkins (1976) and has been used in analyzing and forecasting business, economic, and
demographic variables. Examples of its use in demographic forecasting include McNown et al.

(1995), Pflaumer (1992), Tayman, Smith, and Lin (2007), and Zakria and Muhammad (2009).

As Smith, Tayman, and Swanson (2001: 172-176) discuss, an ARIMA model attempts to
uncover the stochastic processes that generate a historical data series. The mechanism of this
stochastic process is described—~based on the patterns observed in the data series—and that
mechanism forms the basis for developing forecasts. As noted earlier, up to three processes can

represent the stochastic mechanism: autoregression, differencing, and moving average.

The autoregressive process has a memory in the sense that it is based on the correlation of
each value of a variable with all preceding values. The impact of earlier values is assumed to
diminish exponentially over time. The number of preceding values explicitly incorporated into
the model determines its "order." For example, in a first-order autoregressive process, the current
value is only a function of the immediately preceding value. However, the immediately

preceding value is also a function of the one before it, which is a function of the one before it,

11



and so forth. Thus, all preceding values influence current values, albeit with a declining impact.
In a second-order autoregressive process, the current value is explicitly a function of the two
immediately preceding values; again, all preceding values have an indirect impact.

The differencing process creates a stationary time series (i.e., one with constant average
and variance over time, which, in turn, implies there is no trend in the series). A stationary time
series is essential for the construction of ARIMA models. When a time series is non-stationary, it
can often be converted into a stationary time series by calculating differences between values.
First differences are usually sufficient, but second differences are occasionally required (i.e.,
differences between differences). Logarithmic and square root transformations can also convert
non-stationary variances to stationary variances. The moving average represents a "shock™ to the
system or an event with a substantial but short-lived impact on the time series pattern. This
impact has a limited duration, and then time series trends return to normal. The order of the
moving average process defines the number of time periods affected by the shock.

The most general ARIMA model is usually written as ARIMA (p, d, q), where p is the
order of the autoregression, d is the degree of differencing, and q is the order of the moving
average. (ARIMA models based on time intervals of less than one year may also require a
seasonal component.) The first and most subjective step in developing an ARIMA model is to
identify the values of p, d, and g. The d-value must be determined first because a stationary
series is required to identify the autoregressive and moving average processes correctly. The
value of d is the number of times one has to “difference” the series to achieve stationarity
(usually 0 or 1, but occasionally 2 in data with non-linear growth). The p- and g-values are also
relatively small (often 0, 1, or 2). The autocorrelation (ACF) and partial autocorrelation patterns

are used to find the correct values for p and g. For example, a first-order autoregressive model
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[ARIMA (1, 0, 0)] is characterized by an ACF that declines exponentially and quickly and a
PACF with a significant spike only at lag 1. Once p, d, and q are determined, maximum
likelihood procedures are used to estimate the parameters of the ARIMA model. The final step in
the estimation process is model diagnosis. An adequate ARIMA model will have random
residuals, no significant values in the ACF, and the smallest possible values for p, d, or . After a
successful diagnosis is completed, the ARIMA model is ready to use.

In closing this description of the ARIMA process, we note that there are alternatives,
such as dynamic linear modeling (Sevestre and Trognon, 1996), but we employ ARIMA because
of our experience with it and its widespread use.

In terms of our actual results, the patterns of the autocorrelation (ACF) and partial
autocorrelation functions (PACF) were used to find the correct values for p and q (Brockwell and
Davis, 2016: Chapter 3). Each of the nLx ARIMAs model have random residuals and the
smallest possible values for p, d, or g, as determined by the Portmanteau Test (Ljung and Box,
1979; NCSS, 2024). Using these criteria, each of the selected nLx ARIMA models has been
determined to be adequate. We note that there may be other versions that also are "adequate™ and
that further refinement of the selection process can be done (e.g., using the augmented Dickey-
Fuller test (Dickey and Fuller, 1979) to identify the amount of differencing required to achieve a
stationary time series). We used the ARIMA procedure found in the NCSS Statistical Software
System (NCSS, 2024) for this set of tasks. After giving an example of how this approach works,
again note that we use Estonian data from the Human Mortality Database to generate and
evaluate nLx forecasts.

Here is an example of this process using the 2050 world population projection result

produced by Swanson and Tayman (2025b: 4-5).
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Let P = projected world population (at time t;)
Let D = forecasted world population density obtained from ARIMA at time t;, and
Let A = land area of the world (131, 821, 645 square kilometers).

The 2050 ARIMA density forecast shows 73.02, 76.81, and 80.60 persons per square Kilometer,
respectively, for the land area of the world as a whole (95% Lower Limit of forecasted D,
forecasted D, and 95% Upper Limit of forecasted D, respectively). The relative widths of the
Lower and Upper Limits are -0.04938 and 0.04938, respectively. The 2050 world population
projection found at IDB is 9.7 billion. Multiplying 9.75 billion by -0.04938 and adding this product
to 9.75 billion yields 9.27 billion, the 95% Lower Limit, and adding the product 9.75 billion x
0.04938 to 9.7 billion yields 10.23 billion, the 95% Upper Limit of the 2050 world population
forecast found at IDB. Putting it all together, we can state that one can be 95% certain that the

2050 world forecast found at IDB is between 9.27 billion and 10.23 billion.

Underlying the Espenshade-Tayman method is the idea that a sample is taken from a
population of interest. In this case, the ARIMA results represent the sample, and the CCM forecasts
represent the population. This interpretation is de rived from the idea of a “super-population”
(Hartley and Sielken, 1975; Sampath, 2005; Swanson and Tayman (2012, pp. 32-33). This concept
can be traced back to Deming and Stephan (1941), who observed that even a complete census, for
scientific generalizations, describes a population that is but one of the infinity of populations that
will result by chance from the same underlying social and economic cause systems. It is a
theoretical concept that we use to simplify the application of statistical uncertainty to a population
forecast that is considered a statistical model in this context. This approach is conceptually and

mathematically different from the classical frequentist theory of finite population sampling
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(Hartley and Sielken (1975)), but as pointed out by Ding, Li, and Miratrix (2017), in practical
terms, these two approaches result in identical variance estimators. As such, we believe that this
approach is on solid statistical ground. Before moving on, we also note that using the Espenshade-
Tayman method (1982) here is not new. In addition to being employed by Espenshade and Tayman
(1982), it has been used by Swanson (1989), Roe, Swanson, and Carlson (1992) and Swanson and

Tayman (2025a, 2025b) in demographic applications.

Evaluation Using HMD nLx Data for Estonia. The evaluations utilize annual nLx data taken
from the full HMD set for Estonia (1959 to 2024). The evaluations of the point and interval results
were launched from 2000 using 2000/1995 CCRs trended to 2005/2000 CCRs. The model is

shown in Table 1 while the point and interval evaluations are found in Tables 2 and 3.

(TABLE 1 ABOUT HERE)

The form of the “Trended CCR” model can be seen in Table 1. As noted earlier, it was
selected because in a preliminary exploration we examined two forms of the CCR model, one in
which the initial CCRs were kept constant and the other in which the initial CCRs were trended to
the CCRs five year beyond the launch year and found the latter not only to be more accurate but
also have fewer constraint violations. In examining this issue, we found that using a weighted
average between sLo found at the point prior to the appearance of sLo > 500,000, with at least 80
percent of the weight on sLo at the prior point and the remaining percent on sLo at the point of
initial appearance effectively eliminated this violation through the end of the 20 year forecast
horizon we employed. We did not encounter any violations of the third constraint once we

eliminated the initial appearance of the violation of the second constraint.
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In regard to the violations found in the trended model, the first violation occurred in 2015
for sLo (500,248), which was then adjusted to 499,243 (where 499,243 = .8*5Lo in 2010 (498,573)
+.2*5L0 in 2015 (500,248)). The second violation occurred in 2020 when sLo = 500,548 , which
was adjusted to 499,243 (where 499,243 = .8*adjusted sLo in 2015 (499,243 + .2*sLg in 2020

(500,584)).

(TABLE 2 ABOUT HERE)

In addition to showing the numeric and relative differences between the forecasted eo and
the reported eo, the summary measures shown in Table 2 are MALPE (Mean Algebraic Percent
Error), MAPE (Mean Absolute Percent Error), and the Index of Dissimilarity Index (ID, also
known as the Index of Misallocation, IOM). MALPE provides a view of bias in that if it is
negative, then, on average, the forecasted values are lower than the reported values while MAPE
(Swanson and Tayman, 2012: 268-270) shows the mean percent difference between the forecasted
and reported values regardless of whether or not the forecasts were too high or too low. 1D
measures the extent that the forecasted values by age differ from the reported values by age. It is
interpreted as the percent of the forecasted values by age that would have to be re-distributed in
order to match the reported values by age (Swanson and Tayman, 2012: 273). In assessing these
measures of error, we use guidelines found in Smith, Tayman, and Swanson (2013: 348-352) and
Swanson and Tayman, (2012: 281-286) and define substantive errors as at least +-5% but less than

+-10% and extreme errors (outliers) as being +-10% or more.

All of the MALPE and MAPE values are well below 5%. However, the ID measures
arrange from a low of 9% in 2010 to a high of 12.05 % in 2020. Extreme errors (outliers) are
neither summarized in Table 2 nor shown elsewhere but we can report that there are only three

among the 18 age groups across the three evaluation points. All of them occur for age 85+. In
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2010, the highest relative error is found for sLgs (-10.99%); in 2015, the highest error is again for
«Lgs  (-9.9%); and in 2020, it is also for «Lgs (-20.6%). These errors indicate that the method is
more likely to have an error among the older age groups than the younger age groups. These errors
are consistent with both the MALPE values and the differences in eo, which are all negative. As
we subsequently discuss, this suggests that over the period of time employed in the ex post facto
evaluation portion of this case study of Estonia, the method over-estimates mortality on average

in that it under-estimates nLx on average.

With the exception of ID (where the 2015 values is higher than the 2020 value), MALPE,
MAPE and both the absolute and relative difference between the forecasted eo and reported e
increase over time. With the exception of the 2015 ID value, this is consistent with the expectation
that both uncertainty and errors are expected to increase over time as one moves farther away from

the forecast launch year (Swanson and Tayman, 2025a, 2025b).

(TABLE 3 ABOUT HERE)

As seen in tables 3a.1, 3b.1, 3c.1 both of the two constraints that relate to the age groups
are satisfied for all age groups in the 2010, 2015 and 2020 forecasts. As found in tables 3a.2, 3b.2
and 3c.2, the 66% confidence intervals encompass the reported 2010, 2015, and 2020 nLyx values,
respectively, 100%, 94.4%, 88.9% of the time. In the 2015 forecast, the one occasion it does not is
for age 85+ and in the 2020 forecast it does not encompass the reported values for 10-14 and 85+.
These results are consistent with guidelines found in Swanson and Tayman (2014), wherein t 66%

Cls should encompass the actual (reported) value at least 66% of the time.

Continuing with the interval estimates, the 66% “half-widths” ((UL66% - LL66%)/2)

increase over time as should be the case as we expect uncertainty to increase as one goes further
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into the future. In 2010, the mean half-width is 24,297; in 2015, it is 30,668, and in 2020, it is
36,385. Accordingly, the mean half-width in the 2029, 2034, and 2039 forecasts (Tables 6, 7, and
8) are, respectively 48,067, 52,214, and 56,852. Accordingly, the intervals for egalso become wider

over time. Their half-widths for 2010, 2015 and 2020 are, respectively, 4.37, 5.52, and 6.55.

The 66% confidence intervals generated for To and eo (which recall is equal to
To/100,000) started with the nLx forecasts. There are two ways in which the nLx confidence
intervals can be used to place confidence intervals around a given To (and subsequently for eg by
simply dividing the lower limit (LL) and upper limit (UL) found for To by 100,000), one is
informal while the other is formal (Swanson and Tayman, 2014). In the informal approach, one
would obtain confidence intervals for To by adding, respectively, the LLs and ULs found for the
nLx values (i.e., the sum of nLx LLs = To LL and the sum of nLx ULs =To UL). The formal
approach is called the “error propagation method” by Deming (1950: 127- 134). In different
forms it has been used by Alho and Spencer (2005), and Espenshade and Tayman (1982), among
others. This approach involves summing the squared values of the forecasted intervals, finding
the square root of the summed forecast interval values and dividing this by the square root of the
sample size to obtain an estimate of the standard error for the total forecast. This standard error
is then multiplied by the total forecast (found by summing the point forecasts) to obtain the
margin of error. The margin of error is added to and subtracted from the total forecast to obtain
the interval associated with the desired level of confidence (66%, 95%, 99%). Applied to a
forecast of To, this approach assumes that the nLx forecasts are independent, which is not an
unreasonable assumption in that they are not forced to sum to any specified total (i.e., they are
not “controlled” to an externally produced To) and each ARIMA-based forecast of “,Lx density”

is a separate model. Swanson and Tayman (2014) report that both the informal and formal
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approaches generated virtually indistinguishable confidence intervals when aggregated from the

“bottom-up” forecasts to the total forecast. As such, we employed the informal approach here.

Keeping in mind that Swanson and Tayman (2012: 275) point out that it is not generally
possible to produce a population estimate for which all error criteria are simultaneously minimized,
we find that the evaluation suggests that the method is slightly biased toward under-estimation of
nLx but is capable of producing point and interval forecasts that are sufficiently accurate that the
method should be considered for use. This is with the proviso that evaluations of its performance
should also continue, both in terms of populations that have mortality patterns similar to Estonia’s
over the case study period and in terms of population that have different mortality patterns. We
conclude with the fact that to some extent, the COVID-19 pandemic (approximately January 2020

to May, 2023) to may have affected some of our results Righy and Satija (2023).

An Example Forecast for Estonia. Because the evaluation data cover a 20 year forecast horizon
from the launch year of 2000 (with the launch using 2000/1995 CCRs trended to 2005/2000 CCRs
to forecast nLx for 2010, 2015, and 2020) to the target year of 2020, we use the same horizon for
the example forecast, which is launched from the most recent data (2024) available in the Human
Mortality Database. The result is a forecast launched from 2019 (using 2019/2014 CCRs trended
to 2024/2019 CCRs to forecast nLx for 2029, 2034, and 2039) to the target year of 2039. This
model is found in Table 4. The probabilistic nLx forecasts it generates for 2029, 2034, and 2039 are

found in tables 5, 6, and 7, respectively.

(TABLES 4, 5, 6, AND 7 ABOUT HERE)

In comparing the 66% nLx and eo confidence intervals from 2029 to 2039, we find that on

average their half-widths (calculated for ages 0-4 to 85+) increase over time as was the case in
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regard to the half-widths described in the preceding “Evaluation” section. In terms of the nLx half-
widths, they are for 2029, 2034 and 2039, respectively, 48,067, 53,214 and 56,852; in terms of the
half-widths for eo, they are, respectively, 8.65, 9.40, and 10.23. As was the case with the point and
interval evaluations this is encouraging in that as time moves forward we expect uncertainty to

increase. No violations of constraints 2 and 3 were found.

There are interesting differences between the forecasts of eo found, on the one hand in the
evaluation period, 2010, 2015, ad 2020 , which were launched from 2000 and, on the other, in the
forecasts for 2029, 2034, and 2039, which were launched from 2024. In the forecasts for 2010,
2015, and 2020 ey is, respectively, 74.71, 76.08, and 76.72; while in 2029, 2034, and 2039 they
are, respectively, 80.60, 79.98, and 79.36.Thus, they increase until 2029 and then show slight
declines from there to 2034 and 2039. In examining years lived and years remaining by age (15,
30, 45, 65, and 75) over the period 2010 to 2039, we find that years lived increased at all ages (15,
30, 45, 65, and 75) from 2010 to 2020 as did years remaining. Between 2020 and 2029, years lived
decreased at age 15 and age 30, while for 45, 65, and 75, they increased; Between 2029 and 2039,

we found that both years lived and years remaining decreased at all ages (15, 30, 45, 65, and 75).

It may be the case that the slight declines represent the possibility that Estonia’s population
is bumping up against the expiration period of the “biological warranty” (Olshansky and Carnes,
2009). That is, Estonia’s population is coming up against the limits of human longevity. This
interpretation is consistent with those on the side of the longevity debate who argue that continued
increases in human longevity are not likely (see, e.g., Olshansky and Carnes, 2009; Swanson and
Sanford, 2012) as opposed to those on the other side who argue that we can expect continued

increases (see, e.g., de Gray, 2002; Kurzweil, 2005; Oeppen and Vaupel, 2002).
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Discussion. As observed by Toth (2021: 129), the efficiency of a given mortality
forecasting approach largely depends on the character of the given time series, which explains
variation in the usefulness of models with different demographic backgrounds. This observation
applies not only to Estonia but to all of the other nLx data sets found in HMD, which represent 41
countries deemed to have high quality mortality data. As a member of the UN’s “Europe” region
of the world, Estonia can be viewed as a sample of this region, one that is representative in terms
of low fertility and low mortality, but not so much in terms of low migration. Given our ex post
facto evaluation and its small population, our results suggest that the method will likely work in
countries of a similar size as well as with larger populations that generally share its characteristics.
It is an open question whether it will work in countries that have different demographic
backgrounds. Here, again we note that the COVID-19 pandemic (approximately January 2020 to

May, 2023) to may have affected some of our results Rigbhy and Satija (2023).

Constructing CCRs from two consecutive period life tables implies that the two life tables
also represent cohort mortality. For example, in the 2000 and 1995 period life tables used to
construct the CCRs for the evaluation, sL»4 in 2020 is viewed as the cohort that five years earlier
was five years younger, sL2o. Given this, none of the CCRs beyond sLo should exceed 1.00.
However, as can be seen in Table 1, the CCR for these two age groups is 1.005507527, as do the
rest of the CCRs from sLs to sL4s. Because period life tables are not constructed with cohorts in
mind, these “anomalies” can occur when two successive period life tables are viewed in terms of
sets of cohorts. This serves to remind us that the CCRs generated from two successive period life
tables, which is the case in this approach to forecasting nLx, the CCRs represent approximations of
the mortality experience of different sets of cohorts (e.g., in the period life table at time = t+5, sL1o

is part of the cohort sLo found at time = t-5 as is sLs found in the period life table at time = t;
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whereas in the period life table at time = t+5, sLis is part of the cohort sLo found at time = t-10 as
is sL1o found in the period life table at time = t; and so on). If the approximation are close, such
that the entire set of CCR approximates the mortality experience of these sets of cohorts, as
apparently is the case with the CCRs in Table, the approach should work reasonably well over a
20 year period, as our evaluation indicates. If they do not, one can expect more violations of the
constraints, which would require more adjustments than we needed in order to work or lead one to

the decision not to use this approach if the violations are extensive and pronounced.

Thus, in regard to the constraints and the simple adjustment we used to overcome violations
of these constraints, it may be the case that they may not work as well in other populations,
especially those with different demographic backgrounds. As suggested earlier, a useful starting
point for the resolution of violations is found in the “floors and ceilings” discussion found in
Swanson Schlottman, and Schmidt (2010). And, of course, there are the many related tools found
online that can be used for the purpose of overcoming these violations, such as those found at

DemoTools (https://timriffe.github.io/DemoTools/index.html) and the Applied Demography

Toolbox (https://applieddemogtoolbox.github.io/).

Unlike the Lee-Carter Method (and its variants) our new method is directly linked to the
fundamental demographic equation, the cornerstone of demographic theory, an important
consideration in developing accurate forecasts (Swanson et al, 2024). Because it forecasts “years
lived,” this new approach directly yields life expectancy (by age) via the summation of ,Lx values
from 85+ back to age group 0-4. This is not the case with the Lee-Carter Method and its variants,
which would require life table construction from the forecasted ASDR’s (e.g., Fergany’s method

(Fergany, 1971) and the Keyfitz-Frauenthal method (Kintner, 2004: 314-315)).
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From the perspective of formal demography the CCR approach to forecasting nLx is a
means of forecasting the age structure and size of the stationary population that is associated with
a given population (at a given point in time). As such, it can be viewed as a contribution to formal
demography similar to contributions that demonstrated the CCR approach can used to take a given
population to stability (Swanson, 2024; Swanson, Baker, and Tedrow, 2016). Viewed in this light,
the expectation underlying such a forecast is that variance in age at death will continue even if
those who argue that we can expect substantial improvements that lead to higher longevity levels
(e.g., de Gray, 2002; Kurzweil, 2005; Oeppen and Vaupel, 2002). As pointed out by Swanson and
Tedrow (2021), in order to have zero variance in age at death, all of the members of each birth
cohort would have to die at the same time, which is so unlikely as to be impossible in most if not
all species, including humans. Thus, given the other qualifications we have discussed, one could
expect that the CCR approach to forecasting nLx would work reasonably well in the face of

dramatic improvements in human longevity.

Some may argue that the use of a simple forecasting method such as which we employ here
lacks “real world” predictive ability. To such an argument we reply that Green and Armstrong
(2015) find that while no evidence shows complexity improves accuracy, complexity remains
popular among (1) researchers because they are rewarded for publishing in highly ranked journals,
which favor complexity; (2) methodologists, because complex methods can be used to provide
information that supports decision makers' plans; and (3) clients, who may be reassured by
incomprehensibility. In regard to our simple forecasting method being “extrapolative,” we note
that virtually all “objective” forecasting methods not only include elements of judgement, but are
in essence extrapolative and based on historical data, to include ARIMA (Box and Jenkins, 1976;

Pflaumer, 1992), the Cohort Component Method (Smith, Tayman, and Swanson, 2013: 45-50);
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structural models (Smith, Tayman, and Swanson, 2013: 215-238), the Lee-Carter mortality
forecasting method (Lee and Carter, 1992; Basellini, Camarda, and Booth, 2023), and even what
many would consider to be a “subjective” method — The Delphi Technique (Dalkey, 1969).
Moreover, while forecasting comes with uncertainty, as Anatole Romaniuc (2010: 14) observed,

“Uncertainty should not be a deterrent to exploring the future.”

In terms of future research, it would be useful to conduct the same type of evaluation for
different countries. In terms of the Human Mortality Database, this could be done by region of the
world (as specified by the United Nations, there are five, Africa, Americas, Asia, Europe, and
Oceania). For example, Australia (a member of the UN’s “Oceania” region of the world), Canada
(a member of the UN’s “Americas” region of the world, and Japan, a member of the UN’s “Asia”
region of the world. Countries in these same regions not found in HMD may be found in the Human
Life-Table Database (HLD) In terms of either the Human Mortality Database (41 countries) or the
Human Life-Table Database (142 countries) this could be done by region of the world (as specified
by the United Nations, there are five, Africa, Americas, Asia, Europe, and Oceania). Among HLD’s
142 countries, there is a fair contingent from Africa, to include among others, Botswana,
Cameroon, Egypt, Gambia, Ghana, South Africa, Tanzania and Zambia. Examples for other UN
regions found in HLD regions include Indonesia, a member of the UN’s “Oceania” region of the
world, Argentina, a member of the UN’s “Americas” region of the world, and India, a member of

the UN’s “Asia” region of the world.

In addition to further examination of the issues underlying the constraint violations, another
area for future research is to conduct evaluations similar to those employed here in terms of nLx by
gender. Most life tables are by gender and this would be a natural area for the next step in future

research.
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Table 1. The Estonian CCR Model using 2000/1995 CCRs Trended to 2005/2000 CCRs

AGE

5-9
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84

85+

To

€o

nLx
1995

491,905
489,931
488,919
487,197
483,157
478,144
471,701
462,750
448,901
430,629
407,835
375,809
339,481
294,444
244,418
185,599
119,846

81,056

6,088,764

60.89

nlLx
2000
495,239
493,945
493,226
492,183
489,316
485,818
481,540
475,408
465,412
449,868
429,409
403,415
370,022
328,973
276,452
213,398
144,657
113,494
6,323,129

63.23

nLx
2005
496,903
495,991
495,393
494,501
492,104
488,625
484,818
480,016
472,441
460,489
441,805
417,639
387,411
348,749
300,849
240,189
169,435
135,368
7,302,726

73.03

29

2000/1995
CCR
1.006777731
1.004147142
1.006725437
1.006675952
1.00434937
1.005507527
1.007102463
1.007858792
1.005752566
1.00215415
0.997166935
0.989162284
0.98460122
0.969046869
0.938895002
0.87308627
0.779406139
0.564922201

2005/2000
CCR
1.003359994
1.001518459
1.0029315
1.002585022
0.999839491
0.998587825
0.997941616
0.996835154
0.993759045
0.989422275
0.982076965
0.972590234
0.960328694
0.942508824
0.914509701
0.868827138
0.793985886
0.524375269

TREND
IN CCR

0.996605271
0.997382173
0.996231409
0.995936199
0.995509651

0.9931182
0.990903759
0.989062319
0.988075078
0.987295493
0.984867158

0.98324638
0.975347861
0.972614281
0.974027659
0.995121751
1.018706225
0.928225635



Table 2. Summary Measures of Error: Ex Post Facto Forecasts Launched from 2000.

INDEX OF
YEAR MALPE MAPE DISSIMILARITY
2010 -2.21% 2.25% 9.00%
2015 -3.24% 3.26% 13.21%
2020 -3.30% 3.31% 12.05%
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Table 3a.1. 66% Confidence Intervals around the 2010 Trended CCR nLx Forecast

AGE 66%LL FORECAST 66%UL
0-4 497,743 498,573 499,402
5-9 496,728 497,658 499,402

10-14 496,497 497,445 498,393

15-19 494,943 496,674 498,404

20-24 491,107 494,422 497,736

25-29 483,125 491,409 499,630

30-34 479,399 487,619 495,840

35-39 470,618 483,284 495,949

40-44 457,656 477,020 496,385

45-49 439,143 467,444 495,744

50-54 418,076 452,236 486,395

55-59 386,870 429,695 472,521

60-64 338,586 401,071 463,555

65-69 312,879 365,138 417,398

70-74 268,490 318,934 369,379

75-79 218,461 261,386 304,311

80-84 155,984 190,707 225,429
85+ 127,273 159,831 192,389
T, 7,033,577 7,470,544 7,908,261
€o 70.34 74.71 79.08
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Table 3a.2 Number of Times the Forecasted 66% Confidence
Interval Encompasses the Reported nLx Value for Estonia, 2010

REPORTED nLx

AGE REPORTED within 66% CI?
0-4 497,993 1
5-9 497,286 1

10-14 496,900 1

15-19 496,188 1

20-24 494,662 1

25-29 492,099 1

30-34 488,644 1

35-39 484,656 1

40-44 479,759 1

45-49 471,944 1

50-54 459,493 1

55-59 441,346 1

60-64 414,826 1

65-69 379,498 1

70-74 335,629 1

75-79 276,177 1

80-84 201,286 1
85+ 179,561 1
To 7,587,947
€p 75.88

100.00%
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Table 3b.1. 66% Confidence Intervals around the 2015 Trended CCR nlLx Forecast

AGE 66%LL FORECAST 66%UL
0-4 496,287 498,908 499,280
5-9 496,594 497,992 498,464

10-14 496,359 497,779 498,274

15-19 494,967 497,395 498,898

20-24 490,904 495,264 498,702

25-29 481,992 492,401 501,827

30-34 478,745 489,084 498,513

35-39 468,990 484,774 499,657

40-44 454,976 478,981 502,096

45-49 435,584 470,710 504,961

50-54 415,144 457,836 499,677

55-59 384,588 438,662 491,919

60-64 332,597 411,543 489,724

65-69 309,914 377,000 443,385

70-74 267,736 333,028 397,702

75-79 220,838 276,356 331,361

80-84 161,900 206,981 251,677
85+ 140,126 183,321 226,175
T, 7,028,242 7,588,013 8,132,291
€0 70.28 75.88 81.32
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Table 3b.2 Number of Times the Forecasted 66% Confidence
Interval Encompasses the Reported nLx Value for Estonia, 2015

REPORTED nLx

AGE REPORTED within 66% CI?
0-4 498,628 1
5-9 498,098 1

10-14 497,822 1

15-19 496,981 1

20-24 495,693 1

25-29 494,185 1

30-34 491,115 1

35-39 487,214 1

40-44 482,740 1

45-49 476,040 1

50-54 466,094 1

55-59 450,436 1

60-64 427,064 1

65-69 394,841 1

70-74 352,823 1

75-79 298,818 1

80-84 229,295 1
85+ 228,595 0
T, 7,766,482
eo 77.66

94.44%
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Table 3c.1. 66% Confidence Intervals around the 2020 Trended CCR nlLx Forecast

AGE 66%LL FORECAST 66%UL
0-4 497,935 499,243 499,623
5-9 496,922 498,327 499,623

10-14 496,555 498,114 498,616

15-19 495,093 497,729 499,440

20-24 491,116 495,983 499,927

25-29 481,406 493,239 504,083

30-34 478,313 490,071 500,917

35-39 468,159 486,230 503,397

40-44 452,864 480,458 507,158

45-49 432,055 472,645 512,355

50-54 411,364 461,035 509,849

55-59 379,574 444,094 506,798

60-64 326,562 420,131 512,919

65-69 306,301 386,844 466,668

70-74 265,128 343,847 421,926

75-79 221,664 288,569 354,936

80-84 164,958 218,835 272,306
85+ 151,289 204,116 256,564
T, 7,017,261 7,679,507 8,327,105
eo 70.17 76.80 83.27
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Table 3c.2 Number of Times the Forecasted 66% Confidence
Interval Encompasses the Reported nLx Value for Estonia, 2020

REPORTED nLx

AGE REPORTED within 66% CI?
0-4 499,197 1
5-9 498,899 1

10-14 498,649 0

15-19 498,136 1

20-24 497,255 1

25-29 496,047 1

30-34 494,502 1

35-39 491,704 1

40-44 487,561 1

45-49 481,176 1

50-54 471,305 1

55-59 455,676 1

60-64 433,059 1

65-69 401,131 1

70-74 360,633 1

75-79 309,403 1

80-84 242,884 1
85+ 256,986 0
T, 7,874,203
eo 78.74

88.89%
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AGE
0-4

10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+
To

€o

Table 4. The Estonian CCR Model using 2019/2014 CCRs Trended to 2024/2019 CCRs

L

n=x

2014
498,506
497,930
497,648
496,901
495,135
492,941
489,674
485,770
481,204
474,364
463,299
447,155
422,570
389,250
346,909
292,709
223,280
215,087

7,710,332

77.10

L

n=x

2019
499,109
498,656
498,391
497,917
496,825
495,378
493,327
490,713
486,987
480,718
471,203
456,335
435,470
404,363
363,401
310,232
242,813
256,712

7,878,550

78.79

L

n=x

2024
499,245
498,934
498,638
497,954
496,715
495,616
493,933
491,130
487,023
480,855
471,521
458,462
438,654
409,513
371,092
319,331
252,343
283,053

7,944,012

79.44

37

2019/2014
CCR
1.001209614
1.000300899
1.000925833
1.000540543
0.999847052
1.000490775
1.000783055
1.00212182
1.002505301
0.998990033
0.993336341
0.98496867
0.973868122
0.956913647
0.933592807
0.894274867
0.829537185
0.585609774

2024/2019
CCR
1.000272486
0.999649375
0.999963903
0.999123178
0.997585943
0.997566548
0.997083036
0.995546564
0.99248033
0.987408288
0.980868201
0.972960698
0.961254342
0.940393138
0.917719969
0.878729007
0.813400939
0.566644312

TREND

IN CCR
0.999064003
0.999348672

0.99903896
0.998583401
0.997738545
0.997077207
0.996302875
0.993438667
0.990000082
0.988406546

0.98744822
0.987808778
0.987047753
0.982735632
0.982998115
0.982616239
0.980547892
0.967614164



Table 5. Probabilistic 2029 nLx Forecast

AGE
0-4
5-9

10-14

15-19

20-24

25-29

30-34

35-39

40-44

45-49

50-54

55-59

60-64

65-69

70-74

75-79

80-84
85+
To

66%LL
497,066
496,802
496,607
494,280
489,469
478,376
475,593
463,450
444,412
418,802
361,375
361,375
304,040
304,040
261,395
231,631
187,809
236,655

7,003,176

70.03

FORECAST

498,914
498,595
497,975
497,226
495,704
493,816
491,958
487,473
481,357
475,796
468,860
460,094
446,663
423,639
395,706
358,302
307,029
280,748
8,059,854

80.60

66%UL
498,776
498,703
498,566
499,271
499,801
505,282
502,420
505,383
508,993
514,345
511,410
513,252
536,427
496,684
466,490
411,438
338,573
427,767
8,733,579

87.34
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Table 6. Probabilistic 2034 nLx Forecast

AGE 66%LL  FORECAST  66%UL
0-4 497,059 498,582 498,783
5-9 496,797 498,414 498,708

10-14 496,600 498,008 498,573

15-19 494,120 496,834 499,431

20-24 489,093 494,904 500,177

25-29 477,338 493,053 506,315

30-34 474,560 490,555 503,453

35-39 461,798 486,554 507,034

40-44 441,808 478,969 511,597

45-49 414,807 469,785 518,340

50-54 354,405 460,835 516,533

55-59 354,405 450,621 520,222

60-64 291,527 436,539 548,939

65-69 291,527 412,787 506,961

70-74 251,229 382,172 476,655

75-79 223,829 341,674 419,241

80-84 182,864 285,774 343,518
85+ 232,715 322,274 431,707
T, 6,926,480 7,998,423 8,806,187
€o 69.26 79.98 88.06
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Table 7. Probabilistic 2039 nLx Forecast

AGE
0-4
5-9

10-14

15-19

20-24

25-29

30-34

35-39

40-44

45-49

50-54

55-59

60-64

65-69

70-74

75-79

80-84
85+
To

66%LL
497,383
497,122
496,922
494,150
488,626
476,754
474,371
460,983
440,647
411,849
352,201
352,201
286,175
286,175
246,933
222,150
183,936
230,346

6,898,921

68.99

FORECAST
498,252
498,083
497,917
496,956
494,514
492,257
489,797
485,166
478,066
467,455
455,014
442,908
427,551
403,431
372,382
329,987
272,512
333,389

7,935,635

79.36

66%UL
499,121
499,044
498,912
499,762
500,402
507,683
505,223
509,349
515,485
523,061
523,967
533,616
568,926
527,878
497,832
437,825
361,088
436,431
8,945,603

89.46
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